MiniPurge® Type X / ET
Size 1 Manual
ML 442

Contents
1. Specification Sheet – MiniPurge® Type X Systems
2. IECEx Conditions of Certification & (Specials Conditions for Safe Use for ATEX)
3. Application Suitability
4. Description and Principle of Operation
5. Installation of the System
6. Commissioning
7. Maintenance of the System
8. Fault Finding
9. Approval Documents
10. Glossary
1. Specification Sheet – MiniPurge® Type X Systems

Model No. (Example): 07 1 XLC / ss / ET / PO / WM

(Note: Not all codes are applicable)

For limitations and conditions of use refer to the applicable certificate.

Supply Pressure: Must be regulated at inlet
Minimum 60 psi / 0.4 MPa / 4 bar
Maximum 115 psi / 0.8 MPa / 8 bar

Air Quality: Compressed air / Nitrogen to instrument quality

Ambient Temperature:
-20°C to +55°C

Leakage Compensation: Variable up to 2 scfm / 60 Nl/min to compensate for leakage of enclosure

Purge Timer: Adjustable between 1 minute and 99 minutes (-0+3 seconds)

Flow & Pressure Sensors:
CF: One sensor for both
“Low Pressure and Flow”:
1” WC / 250 Pa (2.5 mbar)
“Flow Sensor”:
1.13” WC / 280 Pa (2.8 mbar)

LC:
“Low Pressure Sensor”:
0.2” WC / 50 Pa (0.5 mbar)

Relief Valve:
System: CF
Model No: RLV25/ss
Opening Pressure: 4” WC / 1 kPa (10 mbar)
Purge Flow Rate: N/A (see Spark Arrester)
Material: 316L Stainless Steel, Spark Arrestor: Stainless Steel mesh, Gasket: Neoprene

Spark Arrestor Unit
Model No: SAU25
Purge / Dilution Flow Rate: Between 0.4 & 8 scfm / 10 & 225 Nl/min (Default: 8.0 scfm)
7 user selectable orifice plates

Material:
Stainless Steel

Bulkhead Pipe Fittings:
Air Supply: 1/2” NPT
Output: 1/2” NPT
Signal: 1/8” NPT

Visual Indicators:
CF:
“Alarm / Pressurized (Red / Green)”
“Purge Complete (Black / Yellow)”

LC:
“Alarm / Pressurized (Red / Green)”
“Purge Complete (Black / Yellow)”

Action on “Loss of Pressure”:
CF & LC:
Action on “Loss of Pressure” = “Alarm & Trip” or “Alarm Only”. Both models are user selectable.

1.1 Approval / Certification

Europe
EN60079-0, EN60079-2
Sira 01ATEX1295X
Ex [px] ia IIC T5 Gb
Ex [px] ia IIIC T100ºC Db
Tamb -20ºC +55ºC
IEC
IEC60079-0, IEC60079-2
IECEx SIR 07.0027X
Ex [px] ia IIC T5 Gb
Ex [px] ia IIIC T100ºC Db
Tamb -20ºC +55ºC

Brazil
INMETRO - TUV
TÜV 12.1462X
Ex [px] ia IIC T5 Gb
Ex [px] ia IIIC T100ºC Db
-20ºC ≤ Ta ≤ +55°C

USA / Canada
NFPA 496
FM 1X8A4AE
Class I Div 1 Groups A, B, C & D

Spark Arrestor Unit
Model No: SAU25
Purge / Dilution Flow Rate: Between 0.4 & 8 scfm / 10 & 225 Nl/min (Default: 8.0 scfm)
7 user selectable orifice plates

Material:
Stainless Steel

Bulkhead Pipe Fittings:
Air Supply: 1/2” NPT
Output: 1/2” NPT
Signal: 1/8” NPT

Visual Indicators:
CF:
“Alarm / Pressurized (Red / Green)”
“Purge Complete (Black / Yellow)”

LC:
“Alarm / Pressurized (Red / Green)”
“Purge Complete (Black / Yellow)”

Action on “Loss of Pressure”:
CF & LC:
Action on “Loss of Pressure” = “Alarm & Trip” or “Alarm Only”. Both models are user selectable.
2. IECEx Conditions of Certification & (Specials Conditions for Safe Use for ATEX)

When using the AO, AS and DT options, the recommendations for the additional requirements of Ex p apparatus contained within IEC/EN 60079-14 shall be applied.

The installer/user shall ensure that the MiniPurge Control Unit is installed in accordance with the equipment certificate that covers the combination of the pressurized enclosure(s) and MiniPurge Control Unit.

The values of the safety parameters shall be in accordance with the equipment certificate that covers the combination of the pressurized enclosure and MiniPurge Control Unit.

This MiniPurge Control Unit shall be incorporated into equipment and the appropriate Conformity Assessment Procedures applied to the combination (as defined by Directive 94/9/EC). This certificate does not cover the combination.

The purge controller, low temperature version, shall be protected by a safety related system that ensures that it cannot be energised if the temperature of the air inlet or purge controller falls below -20°C. This system shall utilise the RTDs that are fitted to the purge controller to provide the appropriate level of system integrity, (i.e. a level of operational safety of Cat 3 according to EN 954-1 for ATEX Category 2 Zone 1 applications); note that these RTDs have not been assessed as a safety related device (in accordance with EHSR 1.5 of the Directive 94/9/EC).

3. Application Suitability

MiniPurge® Systems are certified for use in Hazardous Areas, where the Hazardous Area is non-mining (i.e. above ground) and the hazard is caused by flammable gasses, vapours or dust. Depending on the model, the systems may be used in IECEx, ATEX Zone 1(21) - Category 2 and NEC 500 Class I, Div 1.

MiniPurge® systems may be used for hazards of any gas group. However, apparatus associated with the MiniPurge® system, such as Intrinsically Safe signalling circuits and flameproof enclosures containing switching devices may be limited in their gas group. The certification documentation supplied with any such devices must be checked to ensure their suitability.

This system is designed for use primarily with compressed air. Where other inert compressed gasses are used (Nitrogen, for example) the user must take suitable precautions so that the build up of the inert gas does not present a hazard to health. Consult the Control of Substances Hazardous to Health (COSHH) data sheet for the gas used. Where a risk of asphyxiation exists, a warning label must be fitted to the Pressurized Enclosure.

The following materials are used in the construction of MiniPurge® systems. If substances that will adversely affect any of these materials are present in the surrounding environment, please consult Expo for further guidance.

Materials of construction:

- Stainless Steel
- Mild (carbon) Steel
- Brass
- Aluminium
- Nylon
- Polyurethane
- Acrylic
- Silicone Rubber
- Neoprene
- Polycarbonate
- ABS
- Glass Filled Polyester
4. Description and Principle of Operation

All Expo Technologies MiniPurge® pressurization systems provide:

a) a method of pressurizing a Pressurized Enclosure (PE) while at the same time compensating for any leakage, together with
b) a method of purging the enclosure, before power is applied, to remove any flammable gas that may have entered the enclosure while it was not pressurized,
c) visual indication of the MiniPurge® system status, and
d) an output to provide remote indication or control.

The MiniPurge® system comprises a number of component units. The units required depend on the type of system selected. These are summarised in Table 1. The general description and function of each is as follows:

4.1 Control Unit (CU)
The Control Unit (CU) is the heart of the system. It contains a pneumatic logic circuit specially designed and built to control the functions required for purge and pressurization. For all systems this includes air filtration, pressure and purge flow measurement, electronic purge timing, and local visual indication of Pressurized/Alarm and flow sensed. It also provides the outputs for power and remote alarm control corresponding to the output type selected.

4.2 Relief Valve (RLV)
The Relief Valve unit is fitted to the PE to provide a means of limiting the maximum pressure experienced by the PE during operation. The RLV model number has a suffix giving the diameter of the valve aperture in millimetres e.g. RLV25 (= 25mm bore). The RLV also incorporates a Spark Arrestor to prevent sparks being ejected from the PE into the classified area.

In Leakage Compensation systems, the RLV is combined with the flow measurement mechanism.

Figure 1. LC Relief Valve

4.3 Calibrated Outlet Orifice/Spark Arrestor (SAU)
Continuous Flow systems incorporate the SAU25. This unit has a range of interchangeable calibrated orifice plates, which are used to measure the flow through the PE.

Figure 2 Spark Arrestor Type SAU25

4.4 The Methods of Pressurizing

a) CF - Continuous Flow
A Continuous Flow (CF) of protective gas is passed through the PE. Initially this flow is verified and performs the purging phase of the operation. When the purging phase is completed – i.e. the purge time has elapsed- the same flow of protective gas maintains the pressurization of the enclosure. This flow may be required to dilute an internal source of hazardous gas release.
b) LC - Leakage Compensation

Initially a high flow of protective gas is passed through the enclosure. This flow is verified and performs the purging phase of the operation. When the purging phase is completed – i.e. the purge time has elapsed – the flow of protective gas is provided via an adjustable valve so that it just compensates for any leakage from the PE in addition to maintaining its pressurization. If leakage is less than 5 l/min then the LCV will be awkward to set. You will find that the RLV spring will cycle open and closed. If this happens contact our service department for advice.
4.5 Type of Output

The functions of the outputs are power control and alarm/pressurized indication. Power control provides a signal to switch the power to the PE. Alarm output provides a passive signal to indicate remotely when the enclosure is not pressurized and an active signal when pressurized.

a) PO - Pneumatic Output

The power control and pressurized outputs are pneumatic signals, which may be used to operate other devices to provide power switching or alarm indication. The lack of any output signal indicates incomplete purge and alarm. In many instances these outputs may be connected to the Expo range of MiniPurge® Interface Units (MIU).

b) IS - Intrinsically Safe Output

The power control and alarm outputs are volt free contacts which form part of an Intrinsically Safe (IS) circuit which then provides power control or alarm outputs in a safe (unclassified) area. These contacts must only be connected to IS circuits as the switch contacts are in the hazardous area. In many instances these outputs may be connected to the Expo range of MiniPurge® Interface Units (MIU).
c) PA - Power and Alarm

The terminal box is Increased Safety (Ex e) certified and incorporates the terminal connection points for the alarm and interlock circuits. All contacts provided are volt free (dry). Cable entry methods (for example conduit or cable glands) must be certified to IECEx, ATEX or INMETRO standards. The main requirement is that IP66 (or better) ingress protection must be provided by use of seals or washers.

d) HP – High Pressure Sensor

If the pressure in the pressurized enclosure rises above the setting of the High Pressure sensor, the controller resets cutting the power to the enclosure. On detecting the overpressure an optional facility is available for the generation of an alarm or indicator. On systems with High Pressure sensor, the relief valve may be omitted.
5. Installation of the System

This MiniPurge® is designed for use under normal industrial conditions of ambient temperature, humidity and vibration. Please consult Expo before installing this equipment in conditions that may cause stresses beyond normal industrial conditions.

The MiniPurge® system shall be installed in accordance with relevant standards, such as IEC / EN 60079-14, NEC 500, NFPA 496 and any local codes of practice that are in force.

There are up to three components for the MiniPurge® system, dependent upon the system type:

<table>
<thead>
<tr>
<th>System type</th>
<th>Control Unit (CU)</th>
<th>Relief Valve (RLV)</th>
<th>Spark Arrestor Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage Compensation</td>
<td>YES</td>
<td>YES</td>
<td>Integral to RLV</td>
</tr>
<tr>
<td>Continuous Flow</td>
<td>YES</td>
<td>YES</td>
<td>YES (SAU25)</td>
</tr>
</tbody>
</table>

Table 1 System Components

5.1 Control Unit (CU)

The MiniPurge® system should be installed either directly on or close to the PE. See mounting details. Generally the most convenient arrangement is to install the CU on the top of the PE. Must be mounted vertically as shown in MiniPurge® Configuration XBR-7TD0-003. The CU can be mounted on the side of the PE using the rear mounting fixings. The piped connections to the PE should be made using metallic tube through suitable bulkhead connections. The CU can be remote mounted using the wall mounting bars (/WM option), and should be installed as close as possible to the PE. It should be installed so that the system indicators and certification labels may be readily observed.

5.2 Relief Valve (RLV) and Spark Arrestor Unit (SAU)

To achieve efficient purging the points where air enters and exits the PE should normally be at opposite ends of the PE. These items must be mounted vertically. The RLV or SAU are recommended to be situated at the bottom, or on the side of the enclosure at the bottom, when the CU is top mounted on the enclosure, thus achieving top to bottom purging. The purge air may be piped within the PE to ensure purging of potential dead air spots.

It is important that the interior and exterior of the Spark Arrestor is kept clean and debris is not allowed to accumulate which might affect the calibration of the device. In particular the exterior of the Spark Arrestor should not be painted or blocked off in any way.

5.3 Connections to Protective Gas Supply

The MiniPurge® system should be connected to a protective gas supply, which is suitable for purging and pressurization.

The supply pipe connection to the MiniPurge® must be appropriate for the maximum input flow rate for the application.

The air supply must be regulated at a pressure less than the maximum stated inlet pressure.

The air supply must be: clean, non-flammable and from a non-hazardous location. The air should be of Instrument Air Quality. Although the purge control system will operate with lower air quality, its operational life will be adversely affected. The equipment that is being protected by the MiniPurge® may also suffer because of poor air quality.
With reference to BS ISO 8573-1: 2010, Instrument Air is typically specified as:

Particle Class 1
In each cubic metre of compressed air, the particulate count should not exceed 20,000 particles in the 0.1 to 0.5 micron size range, 400 particles in the 0.5 to 1 micron size range and 10 particles in the 1 to 5 micron size range.

Humidity or pressure dew point
The dew point, at line pressure, shall be at least 10 °C below the minimum local recorded ambient temperature at the plant site. In no case, should the dew point at line pressure exceed +3 °C.

Oil Class 2
In each cubic metre of compressed air, not more than 0.1mg of oil is allowed. This is a total level for liquid oil, oil aerosol and oil vapour.

When an inert gas is being used to supply the purge system, risk of asphyxiation exists. Refer to Application Suitability section.

Before connection of the air supply to the purge system, the supply pipe work should be flushed through with instrument quality air to remove any debris that may remain in the pipes. This must be carried out for at least 10 seconds for every meter of supply pipe.

Unless a supply shut-off valve has been fitted to the MiniPurge® system, an external shut-off valve with the same, or larger, thread size as the Control Unit inlet fitting should be fitted by the installer to prevent any restriction of purge flow.

The purge air from the MiniPurge® Control Unit should be piped within the pressurized enclosure to ensure purging of potential dead air spots.

The purge system is fitted with an internal regulator factory set to 3 bar feeding the logic.

5.4 Purge Air from CU to PE
When the CU is mounted directly on the top of the PE, no connection will normally be necessary, as the purge air will discharge into the PE directly. When the CU is not mounted on the top, or where internal air distribution is necessary a connection should be made from the purge air outlet on the CU (normally ½” NPT Female), via pipe pressure rated at least to the supply pressure, to the PE. This should be kept as short as possible and should be adequately sized to ensure that the full purge flow can be delivered.

5.5 CU to Enclosure Pressure Monitor
When the CU is mounted on the top of the PE, no connection will normally be necessary, as the enclosure pressure monitor point will sense directly inside the PE.

If the CU is not directly mounted or if there are fans, which may create localised low-pressure areas within the PE, it is necessary to pipe this connection. The connection is made to the enclosure pressure sensor fitting (normally 1/8” NPT Female) on the CU. There is virtually no flow in this circuit, so small bore tube may be used. Expo recommends 6mm O/D metal tube. Make sure that all connections are free of leaks.
5.6 CU to Flow Sensor
In Continuous Flow (CF) systems, a Differential Pressure Sensor is combined with the Minimum Pressure Sensor and measures the "DP HI (High) / Enclosure Pressure" within the PE and the pressure in the monitoring device at the back of the SAU "DP LO (Low) SAU Connection". This connection requires a pipe connection between the CU and the SAU25.

In Leakage Compensation (LC) systems a dedicated Purge Flow Sensor measures the differential pressure between the "DP HI (High) / Enclosure Pressure" and the pressure in the monitoring device at the back of the RLV "DP LO (Low) RLV Connection". This connection requires a pipe to connect the CU to the RLV25.

5.7 Power Supplies and their Isolation
All power entering the PE shall be provided with a means of isolation. This requirement also applies to any external power sources, which are connected to equipment such as "volt-free" or "dry" contacts within the PE. Printer signal, network cards, etc need isolation.

Exception: Power to other apparatus that is already suitable for the hazardous area need not to be isolated by the MiniPurge® system.

In all cases the application and the isolation of the power must be controlled by the MiniPurge® system. Refer to Specification Sheet for output options available.

5.8 Adjustments and Settings

Purge Time
If no specific purge test has been performed on the PE, the volume of the PE must be determined by the manufacturer or user and the necessary purging time calculated based on the purge flow rate specified by the "standard" being used. It is the user's responsibility to verify or enter this data on the PE and/or MiniPurge® system nameplate. Ask Expo if in doubt. The IEC / EN 60079-2 permits 5 free volume changes and an example of the calculations is as follows:

If the PE external dimensions indicate an internal free volume of 500 Litres then,

\[
\frac{500 \text{ litres enclosure volume } \times 5 \text{ volume changes}}{225 \text{ litres/minute purge flow rate}} = 12 \text{ minutes purge time}
\]

If the PE is a motor, experience of purge testing shows that it is prudent to multiply the motor internal "free" volume by ten to get the purging volume.

\[
\frac{500 \text{ litres enclosure volume } \times 10 \text{ volume changes}}{225 \text{ litres/minute purge flow rate}} = 23 \text{ minutes purge time}
\]

The following applies for NFPA 496 standards where 4 complete volume changes are permitted for enclosures except when the PE contains a motor when 10 volume changes are required.

If the PE external dimensions indicate a total volume of 8 cubic foot, then,

\[
\frac{8 \text{ cubic foot enclosure volume } \times 4 \text{ volume changes}}{8 \text{ cubic foot/minute purge flow rate}} = 4 \text{ minutes purge time}
\]

If the same PE contains a motor, then,

\[
\frac{8 \text{ cubic foot enclosure volume } \times 10 \text{ volume changes}}{8 \text{ cubic foot/minute purge flow rate}} = 10 \text{ minutes purge time}
\]
The standard MiniPurge® units have an adjustable electronic timer system as shown in Figure 8 MiniPurge® Time Selector Switches. The purge time is set by adjusting the Time Selector Switches so that the time equals or exceeds the required purge time. **If the time is set to ‘00’, the purge time will be indefinite.**

Figure 8 MiniPurge® Time Selector Switches

Purge Flow Rate (Orifice Size Selection) – Only for CF Systems

The purge flow rate is selected by placing the appropriate orifice plate in the SAU. The purge flow rates given in Table 2 are based on standard setting of the flow sensor of 2.5mbar, 1” WC, 250Pa. For LC systems the purge flow rate is set by the selection of the RLV and is not user adjustable.

<table>
<thead>
<tr>
<th>Orifice Plate Number</th>
<th>Continuous Flow Rate with 2.5 mbarg, 1” WC, 250 Pa flow sensor set point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N litre/minute</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>D</td>
<td>65</td>
</tr>
<tr>
<td>E</td>
<td>90</td>
</tr>
<tr>
<td>F</td>
<td>135</td>
</tr>
<tr>
<td>G</td>
<td>180</td>
</tr>
<tr>
<td>NO ORIFICE</td>
<td>225</td>
</tr>
</tbody>
</table>

Table 2 Purge Flow Rates

Action on Loss of Pressurization

The action on loss of pressurization is the responsibility of the user. The action on loss of pressurization can be set to ALARMS ONLY (AO), or ALARM AND AUTOMATIC DISCONNECT OF POWER (A&T).

For both Leakage Compensation and Continuous Flow systems, the action on loss of pressurization is set by moving the jumper tube (see Figure 10 Action on Loss of Pressurization Jumper Tube). The standard setting is Alarm and Trip where the link is from C to A&T, with a plug in AO. Changing to Alarm Only (AO) is user adjustable by moving the link from C to AO, and plugging A&T.

![Figure 9 Action on loss of pressurization jumper tube](image)

The selection for action on loss of pressurization depends on the area of operation and the following guidelines should be followed.

The user must make use of this alarm facility in accordance with the local code of practice for "action on pressure or flow failure". Most codes include the following recommendations:
Zone 1 Installations:
Alarm and automatic disconnect of power.
Exception: If the equipment inside the PE is suitable for use in Zone 2, the power trip may be performed manually, (no automatic power trip), if the pressure or flow failure persists for an unacceptable time.

Zone 2 Installations:
Alarm Only on pressure or flow failure with power being removed manually by turning off the air supply to the MiniPurge® system if the failure persists for an unacceptable time.

Class I Division 1 Installations:
Alarm and Automatic Trip of Power. Note: NFPA 496 states power to the circuits shall be permitted to be continued for a short period if immediate loss of power would result in a more hazardous condition and if both audible and visual alarms are provided at a constantly attended location.

Class I Division 2 Installations:
Where automatic timing is preferred, Alarm Only on pressure or flow failure with power being removed manually by turning off the air supply to the MiniPurge® system if the failure persists for an unacceptable time.

5.9 Internal Gas Release
If the PE contains an internal source of release of flammable gas or vapour, the procedures for assessment of the release as given in NFPA 496 or IEC / EN 60079-2 should be used. Expo is pleased to provide assistance or consultancy and advice on such matters. The user must verify that the specifications of the Expo system e.g. pressure, continuous flow (dilution) rate and type of protective gas are correct for the specific application.

5.10 Multiple Enclosures
More than one PE can be protected by a single system. Where PEs are connected and purged in "series" e.g. "Daisy Chained", the RLV and when using a CF system, the SAU25 should be fitted on the last enclosure with the Purge Inlet connected to the first enclosure. The bore and length of the pipe or conduit used to interconnect the enclosures is critical and will determine the maximum pressure experienced by the first enclosure in the series. Advice on sizing can be obtained from the Expo sales office but in general terms when using RLV25 or SAU25, the pipe bore size should not be less than 25mm (1").
A common fault of installing small bore pipe leads to over pressurizing of all but the last enclosure.
PEs should not be connected in parallel.
6. Commissioning

Start by check that the system has been installed in accordance with this manual.

Disconnect the supply pipe from the inlet to the MiniPurge® system and blow it through for at least 10 seconds per meter (3ft) of length to remove any debris or condensation.

Connect a temporary pressure gauge or water manometer to the PE or MiniPurge® system pressure test point (Remove the red plug on the low pressure sensor and connect 4mm OD nylon tube).

Figure 10. PE or MiniPurge® system pressure test point

Unless a supply shut-off valve has been specially fitted inside the MiniPurge® system, it may be advisable to install an external shutoff valve with the same, or larger, thread size as the MiniPurge® CU inlet fitting upstream of the connection.

6.1 Continuous Flow (CF) Systems

Open the Flow Control Valve (FCV) until the alarm/pressurized indicator just turns from red to green. Clockwise will reduce the flow and anti-clockwise will increase the airflow. If the FCV is opened fully and the indicator has still not turned green, check the air supply pressure at the inlet to the control unit while flow is taking place. It must be above the minimum 4 bar/ 60 psig/ 400kPa specified.

Check that the internal logic gauge reads 2bar /30 psig/200kPa. The electronic purge timer will start as soon as the ‘alarm/pressurized’ indicator turns from red (alarm) to green (pressurized). Check that the time delay between the indicator flashing yellow and the application of power to the PE is not less than the minimum time required to purge the PE. When the purge time has been completed, the ‘purge complete’ indicator will stop flashing. After the power has been turned on by the CU, the air flow will continue at the same rate to provide dilution as required.

Figure 11. Flow Control Valve (FCV)
6.2 Leakage Compensation Systems (LC)

- Open the Leakage Compensation Valve (LCV) fully, turn anti-clockwise. Clockwise will reduce the flow and anti-clockwise will increase the airflow.
- Open the supply regulator SLOWLY and allow the PE pressure to rise until the RLV opens.
- Check that the RLV opens at or below the figure specified in the documentation. RLV tolerance of +0, -20% of default setting.
- Repeat the test several times.

Figure 12 Leakage Compensation Valve

- Open the supply regulator to between 4 and 8 barg / 60 and 115 psi / 400 and 800 kPa and the purging flow will start.
- Check that the internal logic gauge reads 2 bar /30 psi / 200 kPa

At this time the "alarm/pressurized" indicator should be green and the "purging" indicator should be flashing yellow. If the “purging” indicator remains black the flow through the RLV is below the minimum for which the flow sensor has been calibrated. Check the air supply pressure at the inlet to the control unit while purging is taking place. It must be above the minimum specified.

The electronic purge timer will start as soon as the "purging" indicator starts flashing yellow. Check that the time delay between the “purging” indicator flashing yellow and the application of power to the PE is not less than the minimum time required purging the PE. Times in excess of the minimum are permitted. If the time is too short it must be increased accordingly. After the power has been applied via the CU, the purging valve will close and the air flow into the enclosure will be controlled by the LCV. The initial setting of fully open will normally be too high. It should now be adjusted to set the PE pressure and leakage. There are three possible situations:

Air continues to come out through the RLV Spark Arrestor after power has been applied in considerable quantity. The LCV is much too far open and the air flow is holding the RLV open continuously.
Close the LCV slowly. The PE pressure will start to fall as the flow decreases but eventually the RLV will close and the enclosure pressure rise again. At this point the RLV may start to open intermittently as the PE pressure rises to the point where it exceeds the RLV opening pressure. When the RLV opens the pressure will fall quickly to the point where the RLV re-closes and the enclosure pressure starts to rise again. This is entirely normal for this type of RLV.

If the RLV is opening intermittently the LCV is slightly too far open. When the RLV opens the enclosure pressure falls quickly to the point where the RLV re-closes and the enclosure pressure starts to rise again. This is entirely normal for this type of RLV and shows that it is working correctly.
Continue then to close the LCV until the cycling stops and the enclosure pressure starts to fall. Carefully adjust the LCV until the PE pressure is approximately 50% of the RLV opening pressure and stable. This pressure may be around 5 mbarg / 2” WC / 500 Pa and will be the "normal working pressure".
We recommend that the setting of the minimum pressure sensor be checked at this time. Note the position of the LCV knob. (A pencil mark placed on the knob at “12 O'clock” can be used). Slowly lower the PE pressure by closing the LCV further, counting the number of turns from the "normal working pressure" position. Note the pressure at which the "alarm/pressurized" indicator turns from green to red and check that it is not lower than the figure given in the documentation. Check also the "alarm" electrical contacts. As soon as the "alarm/pressurized" indicator turns red, the system will start to re-purge. If Alarm and Trip function is selected the enclosure power will be switched off.

While it is re-purging return the LCV to its "normal working pressure" position so that, at the end of purging, the enclosure pressure should immediately settle down at the correct "normal" pressure.

If, at the end of purging, the PE pressure falls below the minimum pressure sensor setting and the LCV is fully open, the system will start to purge again. This is indicative of excessive leakage from the enclosure. In this case, check the enclosure for leakage, and reduce or eliminate the leaks. This time, at the end of purging, the enclosure should stay pressurized and the RLV action is as in a) or b) above. Proceed as described above.

6.3 Normal operation
Turn the air supply on or off to start or stop the system. After this the pressurizing and purging sequence is entirely automatic.

6.4 High Pressure Valve
This valve is set at Expo and should not be changed. The function of this valve is to set the delay time of the purge system restarting after the maximum HP sensor pressure is reached.
7. Maintenance of the System

The maintenance recommended for the system consists of the following items, supplemented by any additional local requirements imposed by the local Code of Practice. Expo recommends that the commissioning tests be repeated at least every six months. In addition, the following checks are also recommended at that time:

- Check the RLV and all Spark Arrestors. Remove all debris & corrosion or replace with a spare.

- Check the condition of the air supply filter element. Clean or replace it as necessary.

At least every two years check the following additional items:

- Apparatus is suitable for the Hazardous Location

- There are no unauthorised modifications

- The air supply must be to the correct quality, refer to section Air Quality

- The interlocks and alarms function correctly

- Approval labels are legible and undamaged

- Adequate spares are carried

- The action on pressure failure is correct

The Intrinsically Safe Battery Pack should be changed at least every three years, and the commissioning tests repeated. After the timing phase has elapsed, the battery may be ‘hot-swapped’ in a hazardous environment without effecting the operation of the MiniPurge Ex px system.

Recommended spares
ETM-IS31-001 Intrinsically Safe Battery Pack

Pressure sensor calibration
If it is decided that the minimum pressure /purge flow sensor needs recalibrating it must be returned to Expo for this service.

Filter cleaning
If the filter element needs cleaning the filter bowl can be unscrewed and removed. The filter element also unscrews and can then be cleaned in soapy water. Do not use solvents on any part of the filter assembly.
8. Fault Finding

If the system does not behave in the manner described above, there is a fault. Some of the more likely faults are dealt with below. If a cure cannot be affected by following the procedure shown below, please call Expo (24 hour answering) or your supplier for further assistance.

The system has been designed for ease of fault finding and the many of the components fitted are plug-in or manifold mounted. Check components by substitution only after establishing that such action is necessary. If the system is less than 12 months old, parts under warranty should be returned to Expo for investigation, with a full report of the fault and the system serial number.

As with any pneumatic system the greatest enemies are water, oil and dirt in the air supply. For this reason, the air system must always incorporate a dust and water filter. This can be part of the Expo system or can be provided by others. However, dirt can enter from other sources and it is vital therefore that the procedures described in Section 2 is carried out before using the system for the first time, or following any disconnection of the pipe-work. Failure to perform this work may cause damage that will not be covered under warranty.

Before making the following checks verify that both the main air supply pressure to the purge system & the regulated pressure to the logic are as specified on the system specification sheet.

Different flow charts for faulting have been provided for both the CF and LC options.
Fault Finding (CF)

Pressurized indicator will not turn green or Purging indicator will not flash yellow

Is the air supply pressure incorrect?

Yes

Check the air supply pressure at the inlet to the MiniPurge is stable between 4 - 8 Barg / 60 - 115 psi

No

Is the supply pipe to the air inlet as least 12mm I.D?

Yes

Replace pipe work

No

Is there excessive leakage from the PE?

Yes

Any significant leakage must be corrected. Check for leaks down the cables or conduit. Ensure leakage does not exceed 60 Nl/min (2 cfm)

No

Is the PE strong enough?

Yes

The standard requires that the PE is tested to 1.5 times the Relief Valve opening pressure e.g. 15 mbarg for many systems. Has this been done?

No

Is the Pressure / Flow Sensor out of calibration or faulty?

Yes

The basic operation of the Pressure Sensor can be checked by unscrewing the 60mm diameter diaphragm housing and, by using a rubber pad, e.g. an eraser, block the 12mm threaded hole in the top of the valve module. The valve should operate and the indicator turns green. If this is correct, the sensor diaphragm needs recalibrating or replacing.

No

Call Expo
System fails to switch power on after the purge time has elapsed.

Is Power available?
No

Is Power isolator closed?
Yes
No

Are the fuses or circuit breaker?
Yes
No

Has the purge time completed its course?
Yes
No

For PO option only
Is there pressure at the power switch output bulkhead and at the power switch? Is the power switch OK?
Yes
No

Check the small indicator button on the timer valve. When the valve has timed out, it should return out when depressed.

Check if the external Power Switch contacts close at 1.4 Barg

Ensure that the purge time is returned to its original setting and checked before putting the system back into service.

For PO option only
Is the tube to the power switch air tight?
Yes
No

Ensure fitting nuts are tightened and that the tube is not damaged. Check and repair as necessary.

Note the timer setting. Reset the timer to the minimum available purging period and check the operation on that purge time.

Is the Purge time correct?
Yes
No

Call Expo
Is the Pressurized Enclosure pressure too high?

Yes

No

Is there debris on the RLV disk allowing air to leak from the valve?

Yes

No

Relief Valve opens continuously or intermittently.

The Flow Control Valve (FCV) is too far open. Adjust the FCV clockwise to reduce the PE pressure.

Remove the RLV cover and clean the valve disk. If it is necessary to remove the disk and spring from the RLV, draw a line around it with a pencil to allow accurate replacement before removal, otherwise the opening pressure may be affected.

Call Expo
Fault Finding (LC)

System purges correctly but the alarm comes on at the end of purge time and the purging cycle is repeated.

Is the actual PE pressure below the setting of the Minimum Pressure Sensor?

Yes

Check the PE pressure with a manometer or gauge.

No

Is the Leakage Compensation Valve setting too low causing the MiniPurge to auto-repurge?

Yes

Increase the PE pressure by turning the Leakage Compensation Valve anti-clockwise.

No

Call Expo

Call Expo
Purging indicator will not flash "Yellow" during Purging.

Is the air supply pressure incorrect?

Yes

Check the air supply pressure at the inlet to the MiniPurge is stable between 4 - 8 Barg / 60 - 115 psi

No

Is the supply pipe to the air inlet at least 12mm I.D?

Yes

Replace pipe work

No

Any significant leakage must be corrected. Check for leaks down the cables or conduit. Ensure leakage does not exceed 60 Nl/min (2 clm)

Is there excessive leakage from the PE?

Yes

The standard requires that the PE is tested to 1.5 times the Relief Valve opening pressure e.g. 15 mbarg for many systems. Has this been done?

No

Is the PE strong enough?

Yes

Ensure fitting nuts are tightened and that the tube is not damaged. Check and repair as necessary.

No

Is the tube between the RLV tapping and flow sensor air tight?

Yes

The operation of the Purge Flow Sensor can be checked by carefully removing the insulated female spade crimp terminals* on the underside of the hexagonal sensor. A wire link across them should operate the Electronic Timer and the 'purging' indicator flash yellow. If this is correct, the sensor diaphragm needs recalibrating or replacing, if not, replace the I.S. Battery Pack.

No

Is the Purge Flow Sensor out of calibration or faulty?

Yes

Call Expo

No

*Note: When replacing the terminals it is very important to ensure they are fully sealed by the terminal gasket.
System fails to switch power on after the purge time has elapsed.

Is Power available?

Yes

No

Is Power isolator closed?

Yes

No

Are the fuses or circuit breaker?

Yes

No

Has the purge time completed its course?

Yes

No

Check the small indicator button on the timer valve. When the valve has timed out, it should return out when depressed.

For PO option only

Is there pressure at the power switch output bulkhead and at the power switch? Is the power switch OK?

Yes

No

Check if the external Power Switch contacts close at 1.4 Barg

For PO option only

Is the tube to the power switch air tight?

Yes

No

Ensure fitting nuts are tightened and that the tube is not damaged. Check and repair as necessary.

Is the Purge time correct?

Yes

No

Note the timer setting. Reset the timer to the minimum available purging period and check the operation on that purge time. Ensure that the purge time is returned to its original setting and checked before putting the system back into service.

Call Expo
Is the Pressurized Enclosure pressure too high?

Relief Valve opens continuously or intermittently.

The Leakage Compensation Valve (LCV) is too far open. Adjust the LCV clockwise to reduce the PE pressure.

Is there debris on the RLV disk allowing air to leak from the valve?

Remove the RLV cover and clean the valve disk. If it is necessary to remove the disk and spring from the RLV, draw a line around it with a pencil to allow accurate replacement before removal, otherwise the opening pressure may be affected.

Call Expo
9. Approval Documents

Certificates can be found in the accompanying booklet (ML499) or download the certificates at www.expoworldwide.com/downloads.

<table>
<thead>
<tr>
<th>Component</th>
<th>Certificate</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiniPurge®</td>
<td>IECEx Certificate</td>
<td>IECEx SIR 07.0027X</td>
</tr>
<tr>
<td></td>
<td>ATEX Certificate</td>
<td>01ATEX1295X</td>
</tr>
<tr>
<td></td>
<td>INMETRO/TUV</td>
<td>TUV 12.1462X</td>
</tr>
<tr>
<td></td>
<td>FM Certificate</td>
<td>1X8A4.AE</td>
</tr>
<tr>
<td>Ex d switches</td>
<td>IECEx Certificate</td>
<td>IECEx EPS 14.0092X</td>
</tr>
<tr>
<td></td>
<td>ATEX Certificate</td>
<td>EPS 14 ATEX 1 766 X</td>
</tr>
</tbody>
</table>

For PA Option Only

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e junction box</td>
<td>IECEx Certificate</td>
</tr>
<tr>
<td></td>
<td>ATEX Certificate</td>
</tr>
<tr>
<td></td>
<td>INMETRO/TUV</td>
</tr>
<tr>
<td>Ex d switches</td>
<td>IECEx Certificate</td>
</tr>
<tr>
<td></td>
<td>ATEX Certificate</td>
</tr>
</tbody>
</table>

10. Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&T</td>
<td>Alarm and Trip</td>
</tr>
<tr>
<td>AO</td>
<td>Alarm Only</td>
</tr>
<tr>
<td>CF</td>
<td>Continuous Flow</td>
</tr>
<tr>
<td>CU</td>
<td>Control Unit</td>
</tr>
<tr>
<td>FCV</td>
<td>Flow Control Valve</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual</td>
</tr>
<tr>
<td>IS</td>
<td>Intrinsically Safe</td>
</tr>
<tr>
<td>LC</td>
<td>Leakage Compensation</td>
</tr>
<tr>
<td>LCV</td>
<td>Leakage Compensation Valve</td>
</tr>
<tr>
<td>MIU</td>
<td>MiniPurge® Interface Unit</td>
</tr>
<tr>
<td>PA</td>
<td>Ex d Power and Alarm Switch Wired to Ex e terminal box</td>
</tr>
<tr>
<td>PE</td>
<td>Pressurized Enclosure</td>
</tr>
<tr>
<td>PO</td>
<td>Pneumatic Output</td>
</tr>
<tr>
<td>RLV</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>SAU</td>
<td>Spark Arrestor Unit</td>
</tr>
</tbody>
</table>
MINIPURGE

FLATNESS TO BE LESS THAN 0.4mm OVER ANY 100mm LENGTH

UNSPECIFIED TOLERANCES

MATERIAL

DRAWN TO

DO NOT SCALE

FLATNESS TO BE LESS THAN 4mm OVER ANY 100mm LENGTH

DIMENSIONS IN mm

HOLE ø7.5 [ø0.30"]

POWER INTERLOCK SIGNAL 1/8" NPTF

PASSIVE ALARM PRESSURIZED 1/8" NPTF

PURGE OUTLET 1/2" NPTF

D.P. HI / ENCLOSURE PRESSURE 1/8" NPTF

D.P. LO / RLV OR SAU CONNECTION 1/8" NPTF

D.P. OPTION

HOLE SUITABLE FOR GLAND M20 OR 1/2" NPT

MOUNTING BAR

SPECIAL OPTION ONLY

PO. OPTION

IS. OPTION

NOTES

MINIPURGE MUST BE MOUNTED WITH PURGE OUTLET FITTING IN VERTICAL PLANE POINTING DOWN.

APPROXIMATE WEIGHT: 5.5 kg [12.1 POUNDS].

EQUIVALENT IMPERIAL DIMENSIONS SHOWN IN BRACKETS.

REFER TO DRG XSD-7TD0-001 FOR MOUNTING DETAILS.

HOLE ø5 [ø0.20"]

POWER INTERLOCK SIGNAL 1/8" NPTF

PASSIVE ALARM PRESSURIZED 1/8" NPTF

PURGE OUTLET 1/2" NPTF

D.P. HI / ENCLOSURE PRESSURE 1/8" NPTF

D.P. LO / RLV OR SAU CONNECTION 1/8" NPTF

D.P. OPTION

HOLE SUITABLE FOR GLAND M20 OR 1/2" NPT

MOUNTING BAR

SPECIAL OPTION ONLY

PO. OPTION

IS. OPTION

NOTES

MINIPURGE MUST BE MOUNTED WITH PURGE OUTLET FITTING IN VERTICAL PLANE POINTING DOWN.

APPROXIMATE WEIGHT: 5.5 kg [12.1 POUNDS].

EQUIVALENT IMPERIAL DIMENSIONS SHOWN IN BRACKETS.

REFER TO DRG XSD-7TD0-001 FOR MOUNTING DETAILS.

HOLE ø5 [ø0.20"]

POWER INTERLOCK SIGNAL 1/8" NPTF

PASSIVE ALARM PRESSURIZED 1/8" NPTF

PURGE OUTLET 1/2" NPTF

D.P. HI / ENCLOSURE PRESSURE 1/8" NPTF

D.P. LO / RLV OR SAU CONNECTION 1/8" NPTF

D.P. OPTION

HOLE SUITABLE FOR GLAND M20 OR 1/2" NPT

MOUNTING BAR

SPECIAL OPTION ONLY

PO. OPTION

IS. OPTION

NOTES

MINIPURGE MUST BE MOUNTED WITH PURGE OUTLET FITTING IN VERTICAL PLANE POINTING DOWN.

APPROXIMATE WEIGHT: 5.5 kg [12.1 POUNDS].

EQUIVALENT IMPERIAL DIMENSIONS SHOWN IN BRACKETS.

REFER TO DRG XSD-7TD0-001 FOR MOUNTING DETAILS.

HOLE ø5 [ø0.20"]

POWER INTERLOCK SIGNAL 1/8" NPTF

PASSIVE ALARM PRESSURIZED 1/8" NPTF

PURGE OUTLET 1/2" NPTF

D.P. HI / ENCLOSURE PRESSURE 1/8" NPTF

D.P. LO / RLV OR SAU CONNECTION 1/8" NPTF

D.P. OPTION

HOLE SUITABLE FOR GLAND M20 OR 1/2" NPT

MOUNTING BAR

SPECIAL OPTION ONLY

PO. OPTION

IS. OPTION

NOTES

MINIPURGE MUST BE MOUNTED WITH PURGE OUTLET FITTING IN VERTICAL PLANE POINTING DOWN.

APPROXIMATE WEIGHT: 5.5 kg [12.1 POUNDS].

EQUIVALENT IMPERIAL DIMENSIONS SHOWN IN BRACKETS.

REFER TO DRG XSD-7TD0-001 FOR MOUNTING DETAILS.

HOLE ø5 [ø0.20"]

POWER INTERLOCK SIGNAL 1/8" NPTF

PASSIVE ALARM PRESSURIZED 1/8" NPTF

PURGE OUTLET 1/2" NPTF

D.P. HI / ENCLOSURE PRESSURE 1/8" NPTF

D.P. LO / RLV OR SAU CONNECTION 1/8" NPTF

D.P. OPTION

HOLE SUITABLE FOR GLAND M20 OR 1/2" NPT

MOUNTING BAR

SPECIAL OPTION ONLY

PO. OPTION

IS. OPTION

NOTES

MINIPURGE MUST BE MOUNTED WITH PURGE OUTLET FITTING IN VERTICAL PLANE POINTING DOWN.

APPROXIMATE WEIGHT: 5.5 kg [12.1 POUNDS].

EQUIVALENT IMPERIAL DIMENSIONS SHOWN IN BRACKETS.

REFER TO DRG XSD-7TD0-001 FOR MOUNTING DETAILS.
LC LEAKAGE COMPENSATION SHOWN (ITEMS IN DOTTED REMOVED FOR CF AND REPLACED BY TIMER SWITCH)

1. GAUGE, LOGIC AIR SUPPLY
2. LOGIC AIR SUPPLY REGULATOR
3. ELECTRONIC TIMER
4. BLACK COLLAR (PLUGGED)
5. INDICATOR, "ALARM/PRESSURIZED"
6. INDICATOR, "PURGING"
7. I.S. BATTERY PACK
8. MINIMUM PRESSURE SENSOR
9. "OR" GATE
10. LEAKAGE COMPENSATION VALVE
11. TIMER VALVE
12. PURGE BOOST VALVE
13. PURGE FLOW SENSOR
14. MAIN AIR SUPPLY FILTER, MANUAL DRAIN
15. "OR" GATE
16. LEAKAGE COMPENSATION VALVE
17. TIMER VALVE
18. PURGE COMPLETE VALVE (BELOW ITEM 17)
19. PURGE 4mm
20. "ACTION ON ALARM" OPTION PIPE
21. ALARM ONLY PUSH-IN FITTING
22. ALARM AND TRIP PUSH-IN FITTING
23. ALARM ONLY
24. PUSH-IN PLUG
25. VIEW OF INSIDE OF DOOR
26. ENCLOSURE PRESSURE TEST POINT
Ex d SWITCH WIRED TO ALARM TERMINALS IN PA BOX
Ex d SWITCH WIRED TO POWER TERMINALS IN PA BOX
CLEAR 4mm PIPE TO PASSIVE ALARM/PRESSURIZED SIGNAL 1/8" NPTF CONNECTOR
BLUE 4mm PIPE TO POWER INTERLOCK 1/8" NPTF CONNECTOR

NOTE:
LC VERSION SHOWN. (ITEMS IN DOTTED REMOVED FOR CF AND REPLACED BY TIMER SWITCH)

FLATNESS TO BE LESS THAN 0.4mm OVER ANY 100mm LENGTH

TERMINALS FOR CONNECTING I.S. CIRCUITS VIA M20 OR 1/2" NPT CABLE ENTRY ON LHS OR BOTTOM

The contents of this drawing/document are Copyright © Expo Technologies Limited. They are to be treated as confidential and are returnable upon request. They are not to be copied or communicated in part or in whole without written consent from Expo Technologies Limited, neither are they to be used in any way against our interests.
Minipurge X LC Sequence Diagram

Purging:
- Depends upon the user. Actions include: Alarm and/ or Trip
- Alarm and delayed trip
- Power turned off automatically without delay

Pressurized:
- Alarm and/or Trip
- Power turned off automatically without delay

Pressurized Indicator:
- Red = Pressure Low
- Green = Pressure OK
- Amber = Purge flow OK
- Black = Purge flow too low

PRESSURIZED INDICATOR

Purge Outlet:
- Flow above the minimum?
- Purge Flow Sensor turns on
- Purge timer starts automatically
- Purge timer times out
- Pressure compensation starts
- Power on - Normal operation

Purge timer:
- Purge outlet flow above the minimum?
- Purge timer resets
- Purge timer starts automatically
- Purge timer times out
- Pressure compensation starts
- Power on - Normal operation

Purge flow sensor:
- Purge flow above the minimum?
- Purge timer starts automatically
- Purge timer times out
- Pressure compensation starts
- Power on - Normal operation

Alarm:
- Pressure low sensor turns off
- Purge timer resets
- Power on - Normal operation

Leakage Compensation:
- Purge flow falls below the minimum
- Purge timer starts automatically
- Purge timer times out
- Pressure compensation starts
- Power on - Normal operation

Key to functions:
- Manual operation by the user
- Automatic operation by the system
- Optional operation (User decision)

Enclosure:
- Pressure falls below the minimum
- Purge timer starts automatically
- Purge timer times out
- Pressure compensation starts
- Power on - Normal operation

Expo Technologies Limited
Surrey KT7 0RH
United Kingdom

MINIPURGE X LC SEQUENCE DIAGRAM

01 DRAWN 23/06/2010
JpD
PSC
BRD

EXPONETECHNOLOGIES LIMITED

The contents of this drawing/document are Copyright © Expo Technologies Limited. They are to be treated as confidential and are returnable upon request. They are not to be copied or communicated in part or in whole without written consent from Expo Technologies Limited, neither are they to be used in any way against our interests.
MiniPurge CONFIGURATION

NOTES:
1) USE DIRECT MOUNTING WHEREVER POSSIBLE. WALL MOUNTING BRACKETS AND PIPING KITS FOR SIDE MOUNTING ARE OPTIONAL.
2) MINIPURGE MUST BE MOUNTED IN THE POSITIONS SHOWN.
3) PURGE AIR TO VENT INTO TOP OF ENCLOSURE AND EXIT THROUGH RELIEF VALVE/SPARK ARRESTOR AT THE BOTTOM OF THE ENCLOSURE.

D.P. LO
6mm or M5 (10-32 UNF) FITTING SUPPLIED

RLV25 RELIEF VALVE
WEIGHT = 0.5 kg (1.1 lb)

MS FIXINGS SUPPLIED
26 (81/4") HOLES REQUIRED IN ENCLOSURE.
HOLE Ø25("") REQUIRED IN ENCLOSURE

SAU25 SPARK ARRESTOR
WEIGHT = 0.2 kg (0.44 lb)

D.P. LO
6mm or M5 (10-32 UNF) FITTING SUPPLIED

ORIFICE PLATE AND Circlip SEE NOTE
M5 X 1.5P THREAD
Ø25mm ("") CLEARANCE HOLE REQUIRED IN ENCLOSURE

GASKET

Spark ARRESTOR BODY

NOTE:-
SYSTEMS SUPPLIED WITHOUT ENCLOSURES ARE SUPPLIED WITH A RANGE OF 8 ORIFICE PLATES TO SUIT FLOW RATES BETWEEN 10-225 NL/MIN (0.4-8 SCFM)

PRINT WINDOW ON VIEWPORT FULL SIZE

MiniPurge CONFIGURATION

NOTES:
1) USE DIRECT MOUNTING WHEREVER POSSIBLE. WALL MOUNTING BRACKETS AND PIPING KITS FOR SIDE MOUNTING ARE OPTIONAL.
2) MINIPURGE MUST BE MOUNTED IN THE POSITIONS SHOWN.
3) PURGE AIR TO VENT INTO TOP OF ENCLOSURE AND EXIT THROUGH RELIEF VALVE/SPARK ARRESTOR AT THE BOTTOM OF THE ENCLOSURE.

D.P. LO
6mm or M5 (10-32 UNF) FITTING SUPPLIED

RLV25 RELIEF VALVE
WEIGHT = 0.5 kg (1.1 lb)

MS FIXINGS SUPPLIED
26 (81/4") HOLES REQUIRED IN ENCLOSURE.
HOLE Ø25("") REQUIRED IN ENCLOSURE

SAU25 SPARK ARRESTOR
WEIGHT = 0.2 kg (0.44 lb)

D.P. LO
6mm or M5 (10-32 UNF) FITTING SUPPLIED

ORIFICE PLATE AND Circlip SEE NOTE
M5 X 1.5P THREAD
Ø25mm ("") CLEARANCE HOLE REQUIRED IN ENCLOSURE

GASKET

Spark ARRESTOR BODY

NOTE:-
SYSTEMS SUPPLIED WITHOUT ENCLOSURES ARE SUPPLIED WITH A RANGE OF 8 ORIFICE PLATES TO SUIT FLOW RATES BETWEEN 10-225 NL/MIN (0.4-8 SCFM)

PRINT WINDOW ON VIEWPORT FULL SIZE
Fig 1a Single channel interface circuit

e.g. "Y" or "Z" Pressurization Alarm circuit

Hazardous Location
Class I or II, Div 1 or 2
Groups A, B, C, D, E, F, and G
MiniPurge: Option Code /IS

Non-Hazardous Location
(or suitably protected apparatus)

Simple apparatus device

V_{max} = 30V
I_{max} = 100mA
C = 0
L = 0

Power supply
Outputs e.g. to relays or power contactors.

Notes for both Fig 1a and Fig 1b
1. Electrical equipment connected to associated apparatus should not use or generate more than 250 volts.
2. Installation shall be in accordance with the manufacturer's instructions and the National Electrical Code (ANSI/NFPA 70).
3. For guidance on Installation see ANSI/ISA RP12.6, "Installation of IS Instrument Systems in Class I Hazardous Locations"
4. Voc or Vt of associated apparatus is less than V_{max}
 Isc or It of associated apparatus is less than I_{max}
 C_{i} plus capacitance of interconnecting cabling is less than C_{a} of the associated apparatus
 L_{i} plus inductance of interconnecting cabling is less than L_{a} of the associated apparatus
5. "Simple Apparatus" is a device that will not generate or store more than 1.2V, 0.1A, 25mW or 20uJ
6. For Gas Groups A, B permitted I_{max} for I.S., for V peak = 30V is 101 mA
 Alternatively: For Gas Group A, B with V_{peak} = 19.2V I_{max} for I.S. is 350mA.
MiniPurge Interface Unit MIU/e
User Instruction Manual

Manufacturer: Expo Technologies Ltd, Unit 2 The Summit, Sunbury on Thames, UK.

Model Type & Rating:

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIU/e1</td>
<td>400V / 7A</td>
</tr>
<tr>
<td>MIU/e2</td>
<td>400V / 7A</td>
</tr>
<tr>
<td>MIU/e1/MO</td>
<td>400V / 2A</td>
</tr>
</tbody>
</table>

Certificates:

<table>
<thead>
<tr>
<th>Hazardous Area Marking Code:</th>
<th>IECEx EXV 19.0057X</th>
<th>ExVeritas 19 ATEX 0542X</th>
<th>TUV 12.1463</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex eb IIC T5 Gb</td>
<td>Ex eb IIC T5 Gb</td>
<td>Ex e IIC T5 Gb</td>
</tr>
<tr>
<td></td>
<td>Ex tb IIIC T100°C Db</td>
<td>Ex tb IIC T100°C Db</td>
<td>Ex e IIC T5 Gb</td>
</tr>
<tr>
<td>Tamb -20°C to +55°C</td>
<td>Tamb -20°C to +55°C</td>
<td>Tamb -20°C to +55°C</td>
<td>Tamb -20°C to +55°C</td>
</tr>
</tbody>
</table>

APPLICATION SUITABILITY

The MiniPurge Interface Units – MIU/e are certified for use in Hazardous Areas where the Hazardous Area is non-mining (i.e. above ground) and the hazard is caused by flammable gasses or vapours.

The systems may be used in ATEX/IECEx Gas Zones 1 & 2, Gas Groups IIA, IIB & IIC and in Dust Zones 21 & 22, Dust Groups IIIA, IIIIB & IIIC.

The following materials are used in the construction of MIU/e: Stainless Steel, Steel, Brass, Copper, Polyamide, Silicone. If substances that will adversely affect any of these materials are present in the surrounding environment, please consult Expo Technologies for further guidance. This equipment is designed for use under normal industrial conditions of ambient temperature, humidity and vibration. Please consult Expo Technologies before installing this equipment in conditions that may cause stresses beyond normal industrial conditions.

WARNING - Only install, commission, inspect, maintain or fault find when safe to do so.

INSTALLATION

The MIU/e shall be installed in accordance with relevant standards, such as IEC 60079-14 and any local codes of practice that are in force.

The MIU/e shall be connected to the Purge and Pressurization system in accordance with the instructions given in the handbook supplied with the pressurization system.

The external earth connection of the MIU/e shall be connected to earth using minimum 4mm² conductor.

SELECTION OF CABLE, CABLE GLANDS AND CONDUCTORS IN CONDUIT

Cable glands or other cable entry devices shall be appropriately certified and suitable for the cable and the conditions of use and be installed in accordance with the manufacturer’s instructions.

When the MIU/e application requires the hazardous area marking code:

- Ex eb IIC T5 Gb, Tamb -20°C to +55°C there is no further guidance for the selection of cable and cable glands or conductors in conduit.
- Ex eb IIC T4 Gb, Tamb -20°C to +60°C the user shall select cable and cable glands or conductors in conduit that have a higher temperature rating than 83.2°C.

TERMINALS

MIU/e may be fitted with a combination of:

- WDU2.5 terminals certified to DEMKO 14 ATEX 1338U & IECEx ULD 14.0005U.
- SAK2.5 terminals certified to KEMA 97 ATEX 1798U & IECEx KEM06.0014U.
- WPE2.5 Earth terminals certified to DEMKO 14 ATEX 1338U & IECEx ULD 14.0005U.

For all type of terminals:

- Tightening torque range: 0.4 to 0.8 Nm (WDU & WPE) & 0.4 to 0.6 Nm (SAK).
- Conductor cross section maximum 2.5 mm², minimum 1.5 mm².
- Type of connection is screwed - Solid copper conductors to be used.
- Stripping length shall be 10 mm.
- Only one conductor is allowed at each side of a terminal. Multiple conductors shall be crimped together before screwed into the terminal.

Maximum number of terminals:

- For Model MIU/e1 – Up to 18 current carrying terminals.
- For Model MIU/e2 – Up to 33 current carrying terminals.
- For Model MIU/e1/MO – Up to 13 current carrying terminals.

COMMISSIONING

The installation of the cable glands, electrical and earth connections shall be inspected for correct installation before the unit is put into service. The lid shall be correctly fitted.

MAINTENANCE

The condition of enclosure and associated cable glands shall be inspected for damage every six months. The terminals shall be inspected for tightness and gaskets inspected for damage.

FAULT FINDING

When wiring or signal fault occurs, check each terminated wire, terminals for tightness and gaskets for damage. External faults such as broken switches within the Control Unit may also require investigation.
This is to declare that the MiniPurge Purge Controller is manufactured in conformity with the following European Directives and standards:

Electromagnetic Compatibility Directive 2014/30/EU
MiniPurge Systems with a /PO suffix in the type number are non-electrical and are outside the scope of the EMC Directive.
MiniPurge Systems with suffices /PA or /IS incorporate one or more volt-free ("dry") contacts which work in circuits specified by others. In normal operation these circuits are "benign" and no CE mark is appropriate.

Low Voltage Directive 2014/35/EU
MiniPurge Systems are intended for use in potentially explosive atmospheres (Hazardous Areas) and are therefore excluded from the Low Voltage Directive.

Pressure Equipment Directive 2014/68/EU
MiniPurge Systems are classified as not higher than category I under Article 13 of this Directive and intended for use in potentially explosive atmospheres (Hazardous Areas) and are therefore excluded from the Pressure Equipment Directive. MiniPurge Systems are covered under ATEX Directive 2014/34/EU.

ATEX Directive 2014/34/EU Equipment for explosive atmospheres
MiniPurge Systems are designed to conform to the ATEX Directive in fulfilment of the essential health and safety requirements set out in Annex II, and in compliance with:
EN 60079-0: 2012 + A11:2013 \(\text{Ex IIB} 1(2) \text{GD}\)
EN 60079-2: 2014 \(\text{Ex II 2(2) G}\)

MiniPurge Systems are certified by CSA Group Netherlands B.V., Utrechtseweg 310, 6812 AR, Arnhem, Netherlands, under EC Type-Examination Certificate SIRA 01ATEX1295X, in compliance with:
EN 60079-0: 2012 + A11:2013 \(\text{Ex IIB} 1(2) \text{GD}\)
EN 60079-2: 2014 \(\text{Ex II 2(2) G}\)

According to the model, MiniPurge Systems are rated and shall be marked as follows:

- **MiniPurge, Type X & Type Y models**
 Group II Category 2G & 2D \(\text{Ex II 2(2) GD}\)
- **Or MiniPurge, Type X**
 Group II Category 2G \(\text{Ex II 2(2) G}\)
- **MiniPurge, Type Z models**
 Group II Category 3G & 3D \(\text{Ex II 2(3) GD}\)

MiniPurge systems are manufactured under Production Quality Assurance Notification SIRA 99 ATEX M043, issued by CSA Group Netherlands B.V. (CSA), Notified Body No 2813.

Signed for and on behalf of Expo Technologies Ltd.,

John Paul de Beer
Managing Director
Date 12/11/2019
Confidential Assessment file reference SC004
Expo Technologies USA
Expo Technologies Inc.
9140 Ravenna Road Unit #3
Twinsburg,
OH 440878, USA
T: +1 440 247 5314
F: +1 330 487 0611
E: sales.na@expoworldwide.com

Expo Technologies UK
Expo Technologies Ltd.
Unit 2 The Summit, Hanworth Road
Sunbury-On-Thames,
TW16 5DB, UK
T: +44 20 8398 8011
F: +44 20 8398 8014
E: sales@expoworldwide.com

Expo Technologies China
Qingdao Expo M&E Technologies Co. Ltd
329 Huashan Er Lu
Jimo City, Qingdao,
266200 China
T: +86 532 8906 9858
F: +86 532 8906 9858
E: qingdao@expoworldwide.com

www.expoworldwide.com